Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function.

نویسندگان

  • Marianne M Laporte
  • Bo Shen
  • Mitchell C Tarczynski
چکیده

Water is a principal limitation to agricultural production during drought and in arid regions of the world. Mechanisms that plants use to cope with drought can be grouped into two different strategies: drought tolerance and drought avoidance. Previous efforts toward engineering plants for improved performance during drought have focused on drought tolerance, the ability to adjust to dry conditions. This report addresses the engineering of a drought-avoidance phenotype, which allows for the conservation of water during plant growth. The majority of water lost from plants occurs through stomata. When stomata are open, potassium, chloride and/or malate are present at high concentrations in guard cells. The accumulation of large numbers of ions during stomatal opening increases the turgor pressure of the guard cells, which results in increased pore size. Expression of a single gene from maize, NADP-malic enzyme (ME), which converts malate and NADP to pyruvate, NADPH, and CO(2), resulted in altered stomatal behaviour and water relations in tobacco. The ME-transformed plants had decreased stomatal conductance and gained more fresh mass per unit water consumed than did the wild type, but they were similar to the wild type in their growth and rate of development. Providing chloride via the transpiration stream partially reversed the effects of ME expression on stomatal aperture size, which is consistent with the interpretation that expression of ME altered malate metabolism in guard cells. These results suggest a role for malic enzyme in the mechanism of stomatal closure, as well as a potential mechanism for genetically altering plant water use.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of the Maize Sulfite Oxidase Increases Sulfate and GSH Levels and Enhances Drought Tolerance in Transgenic Tobacco

Sulfite oxidase (SO) plays a pivotal role in sulfite metabolism. In our previous study, sulfite-oxidizing function of the SO from Zea mays (ZmSO) was characterized. To date, the knowledge of ZmSO's involvement in abiotic stress response is scarce. In this study, we aimed to investigate the role of ZmSO in drought stress. The transcript levels of ZmSO were relatively high in leaves and immature ...

متن کامل

Codon bias patterns in photosynthetic genes of halophytic grass Aeluropus littoralis

Codon bias refers to the differences in the frequency of occurrence of synonymous codons in coding DNA. Pattern of codon and optimum codon utilization is significantly different between the lives. This difference is due to the long term function of natural selection and evolution process. Genetics drift, mutation and regulation of gene expression are the main reasons for codon bias. In this stu...

متن کامل

Primary structure of the maize NADP-dependent malic enzyme.

Chloroplast-localized NADP-dependent malic enzyme (EC 1.1.1.40) (NADP-ME) provides a key activity for the carbon 4 fixation pathway. In maize, nuclear encoded NADP-ME is synthesized in the cytoplasm as a precursor with a transit peptide that is removed upon transport into the chloroplast stroma. We present here the complete nucleotide sequence for a 2184-base pair full-length maize NADP-ME cDNA...

متن کامل

Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage

Drought tolerance is a key trait for increasing and stabilizing barley productivity in dry areas worldwide. Identification of the genes responsible for drought tolerance in barley (Hordeum vulgare L.) will facilitate understanding of the molecular mechanisms of drought tolerance, and also facilitate the genetic improvement of barley through marker-assisted selection or gene transformation. To m...

متن کامل

Overexpression of the Maize psbA Gene Enhances Drought Tolerance Through Regulating Antioxidant System, Photosynthetic Capability, and Stress Defense Gene Expression in Tobacco

The psbA (encoding D1 protein) plays an important role in protecting photosystem II (PSII) from oxidative damage in higher plants. In our previous study, the role of the psbA from maize (Zea mays. L) in response to SO2 stress was characterized. To date, information about the involvement of the psbA gene in drought response is scarce. Here we found that overexpression (OE) of ZmpsbA showed incre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 53 369  شماره 

صفحات  -

تاریخ انتشار 2002